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1. Introduction 

1.1. Overview 

Java™ is perhaps the first programming system that is both widely used, and 
conceptually clean enough to undergo a formal analysis. This represents a unique 
opportunity for formal methods to make an impact on computing practice. Java is finding 
application in security critical applications especially Internet programming and mobile 
code applications. 

The work on this contract focused on low-level Java Security. The Java compiler 
translates Java class definitions into platform-independent target language known as the 
Java Virtual Machine. The Java Virtual Machine (JVM) is a type-safe, stack-oriented 
abstract machine. JVM code (also called bytecode), not Java source is transmitted when 
an “applet” is sent over the Internet and remotely executed. Because the transmitted code 
cannot be trusted to be the unmodified output of a correct Java (or other language) 
compiler, the code must be checked for consistency either prior to execution or by run-
time checking. Thus security issues in Java are focused on the JVM. This consistency, 
which involves type safety and other issues, is the subject of our investigation.  

A secure system must have a secure foundation.  This foundation is referred to as low-
level security.  In the JVM, language mechanisms are used to insure low-level security. 
These mechanisms insure that mechanisms for attacking a system such as buffer overflow 
attacks cannot be launched against the JVM.  With that foundation, high- level security 
can be provided by a security manager that regulates access to system resources and 
provides a level of separation between independently executing threads.  Kestrel’s 
research program will continue by formalizing the JVM security manager.  

Kestrel has formalized in mathematical notation or Specware specifications the bytecode 
verifier and the class loader, two key components of the JVM runtime that have both 
subtle semantics and play an essential role in the security of the JVM.  Indeed this 
investigation has exposed bugs in the Sun implementation of the JVM that leads to a 
failure of type safety.  This bug exploits the interplay of the bytecode verifier, the class 
loader, and class resolution.  

1.2. Use of Specware  

Specware is a prototype system developed at Kestrel Institute for the formal development 
of executable code from specifications.  Kestrel used the Specware system to generate 
code for the bytecode verifier from a formal specification.  It was one of the largest 
applications of Specware to date, and help to shape development of the system. 

1.3. Accomplishments 

Note that funding from the NSA also contributed to these results. 

• Kestrel has produced the first and to this date only full formalization of the 
bytecode verifier that includes all of its functionality.  

• This formalization has lead to design improvements that we are proposing to Sun.  
These improvements will allow faster and more flexible loading of classes.  In 
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particular the bytecode verifier need not load certain specifications to insure type 
safety. 

• This formalization is written in such a way as to allow extensions of the verifier to 
be specified in a modular way. Kestrel anticipates that such extension will be 
developed to add new security-related functionality to the JVM. 

• Kestrel has written Specware specifications for a subset of these formalizations 
and has refined these specifications to executable code.  

• Kestrel has formalized the essential nature of the JVM class loader and is able to 
prove a type safety result for the combination of the bytecode verifier and class 
loader.  

 

1.4. Results 

 

This effort is detailed in a series of technical papers listed in appendix A.  Most of the 
papers describe the specification of the JVM in Specware.  The [4] paper lists some of the 
problems in the JDK 1.2.2 found using the derived bytecode verifier.  A simple example 
showing the benefits of using a formally derived bytecode verifier developed using 
Specware as opposed to a handwritten bytecode verifier is illustrated below.  

In this example, there are two classes: A and B.  Figure 1 shows that Class A has two 
simple functions(change and m)  defined for integers.  Class B, shown in Figure 2, just 
simply extends Class A to include versions of those functions for float. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - A.java 

 

Class A 

{ 

int i; 

A( ){ } 

void change(int j){ 

  i = j;} 

 

int m(int j){ 

  return i + j; } 

} 
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Figure 2 - B.java (WRONG) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - B.java (CORRECTED) 

 

 

These two files both compile ok in JDK 1.2.2.  However if one was to disassemble 
B.class, the statement return f  + f1 would be using an integer add instead of a floating 
point add and thus could result in an obscure error.  The Specware bytecode verifier 
would compile B.java and give an error.  Figure 3 illustrates a change that would make 
both the JDK1.2.2 and Specware bytecode verifier versions so that the B.java file 
compiles correctly. 

Class B extends A 

{ 

float f  = 0; 

B( ){ } 

void change(float f1){ 

  f  = f1; } 

 

float m(float f1){ 

  return f + f1; } 

} 

Class B extends A 

{ 

float f ; 

B( ){ } 

void change(float f1){ 

  f  = f1; } 

 

float m(float f1){ 

  return f + f1; } 

} 
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